Name: \qquad

Unit 2 Review

Perform the following conversions:

\qquad
17 cm to mm \qquad
5001 g to kg \qquad
0.010 kg to g \qquad
0.0003 km to mm \qquad
828 cs to ms \qquad
4 cg to g \qquad
503 s to ms \qquad
125 cm to km \qquad 1 mL to L \qquad

Indicate the number of significant figures in each of the following:
12 \qquad 1.01 \qquad
1098 \qquad 1000 \qquad
2001 \qquad 22.0403 \qquad
2.001 \qquad 525.00000 \qquad
0.0000101 \qquad 0.0900 \qquad

Perform the following calculations, answering with the proper number of significant figures

$$
\begin{aligned}
& \frac{2.00}{3.00}= \\
& 55.0001+0.0002+0.104= \\
& (0.14)(6.022)= \\
& 52.331+26.01-0.9981=
\end{aligned}
$$

$$
\frac{(4.031)(0.08206)(373.1)}{0.995}=
$$

$$
\frac{0.15}{28.062}=
$$

\qquad

$$
\frac{0.500}{44.02}=
$$

\qquad
$(0.0043)(0.0821)(298)=$ \qquad

Nickels are composed of an alloy containing both copper and nickel. A student finds that the mass of a nickel is 4.89 g . She then determines the mass of the copper in the coin to be 3.66 g and the mass of the nickel in the coin to be 1.23 g . Determine the percent composition of EACH metal in the nickel.

If the accepted mass of copper in a nickel is 3.75 grams, what is the $\%$ error from the experiment above?

