Name:

Unit 2 Review

Perform the following conversions:

5.3 mm to cm	0.0003 km to mm
17 cm to mm	828 cs to ms
5001 g to kg	4 cg to g
0.010 kg to g	503 s to ms
125 cm to km	1 mL to L

Indicate the number of significant figures in each of the following:

12	1.01
1098	1000
2001	22.0403
2.001	525.00000
0.0000101	0.0900

Perform the following calculations, answering with the proper number of significant figures

2.00	(4.031)(0.08206)(373.1)
3.00 =	0.995 =
55.0001 + 0.0002 + 0.104 =	$\frac{0.15}{28.062}$ =
(0.14)(6.022) =	$\frac{0.500}{44.02} =$
52.331 + 26.01 - 0.9981 =	(0.0043)(0.0821)(298) =

Nickels are composed of an alloy containing both copper and nickel. A student finds that the mass of a nickel is 4.89 g. She then determines the mass of the copper in the coin to be 3.66 g and the mass of the nickel in the coin to be 1.23 g. Determine the percent composition of EACH metal in the nickel.

If the accepted mass of copper in a nickel is 3.75 grams, what is the % error from the experiment above?