Unit One: Matter & Change

Describing Matter:

Matter is anything that has mass and takes up space. The	ne of an object is a measure of the
amount of matter the object contains. The	of an object is a measure of the space occupied by the
object. Are mass and weight the same thing?	

There are two different types of properties that we use to describe matter are:

Extensive Property:

Intensive Property:

Matter that has a uniform and definite composition is called a ______. Aluminum (AI) and Copper (Cu) are examples of substances, which are also referred to as ______.

Every sample of a given substance has identical intensive properties because every sample has the same composition!

Aluminum and Copper have some properties in common, but there are differences besides their distinctive colors:

Aluminum	Copper							
Highly reflective	Harder than Aluminum							
Used in Paints	Better conductor of heat/electrical current							
Malleable	Malleable							
Hardness, color, conductivity, and malleability are all examples of physical properties!								

Physical property =

Physical Changes:

States of Matter:

What are the three states of matter?

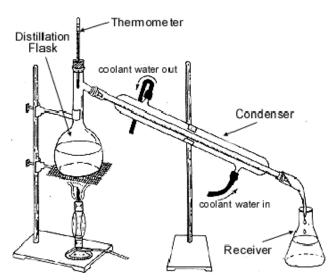
1) 2) 3)

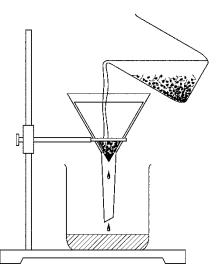
There are several characteristics that distinguish each state of matter from the other two:

Solid:

Liquid:

Gas:


Classifying Mixtures:


A ______ is a physical blend of two or more components. Most samples of matter are mixtures, some mixtures are easier to recognize than others.

Heterogeneous Mixtures:

Homogeneous Mixtures:

In the lab we can use two different techniques to separate mixtures; **filtration** and **distillation**. We will use filtration several times this semester to separate mixtures!

Elements and Compounds:

We will classify substances as either elements or compounds.

Element:

Compound:

In general, the properties of chemicals are different than those of the elements that make up the compound!

Compounds cannot be broken down into simpler substances by the same physical methods that we use to separate mixtures. For example, water (H₂O) is a compound if you boil liquid water you wind up with water vapor, not the individual elements of oxygen and hydrogen that water contains.

A ______ is a change that produces matter with a different composition than the original matter.

- Heating is one of the processes used to break down compounds into simpler substances (if you heat sugar it goes through a series of chemical changes, the final products of these changes are solid carbon and water vapor).
- > There is no chemical process that will break down an element into any simpler substance.

Symbols and Formulas:

As chemists, we use symbols to represent elements, and chemical formulas to represent compounds. You will be responsible for memorizing the chemical symbols for 36 common elements that we will use throughout the year.

The Periodic Table- A Preview: (We will spend an entire unit talking about the periodic table!)

The periodic table allows you to easily compare the properties of one element (or group of elements) to another element (or group of elements).

hydrogen 1	1		121	157	2	ā	151	5	1251	161	Ref. C.	23-4-8	1857.5	505	1955	202	50	helium 2
Η																		He
1.0079 lithium 3	beryllium 4												boron 5	carbon 6	nitrogen 7	oxygen 8	fluorine 9	4.0026 neon 10
Li	Be												В	С	Ν	0	F	Ne
6.941 sodium 11	9.0122 magnesium 12												10.811 aluminium 13	12.011 silicon 14	14.007 phosphorus 15	15.999 sulfur 16	18.998 chlorine 17	20.180 argon 18
Na	Mg												Â	Si	P	S	ČI	År
22.990 potassium	24.305 calcium		scandium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	26.982 gallium	28.086 germanium	30.974 arsenic	32.065 selenium	35.453 bromine	39.948 krypton
19	20		21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca		Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.098 rubidium	40.078 strontium		44.956 yttrium	47.867 zirconium	50.942 niobium	51.996 molybdenum	54.938 technetium	55.845 ruthenium	58.933 rhodium	58.693 palladium	63.546 silver	65.39 cadmium	69.723 indium	72.61 tin	74.922 antimony	78.96 tellurium	79.904 iodine	83.80 xenon
37	38		39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr		Y	Zr	Nb	Мо	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe
85.468 caesium	87.62 barium		88.906 Iutetium	91.224 hafnium	92.906 tantalum	95.94 tungsten	[98] rhenium	101.07 osmium	102.91 iridium	106.42 platinum	107.87 gold	112.41 mercury	114.82 thallium	118.71 lead	121.76 bismuth	127.60 polonium	126.90 astatine	131.29 radon
55	56	57-70	71	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	*	Lu	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
132.91 francium	137.33 radium		174.97 lawrencium	178.49 rutherfordium	180.95 dubnium	183.84 seaborgium	186.21 bohrium	190.23 hassium	192.22 meitnerium	195.08 ununnilium	196.97 unununium	200.59 ununbium	204.38	207.2 ununguadium	208.98	[209]	[210]	[222]
87	88	89-102	103	104	105	106	107	108	109	110	111	112		114				
Fr	Ra	* *	Lr	Rf	Db	Sg	Bh	Hs	Mt	Uun	Uuu	Uub		Uuq				
[223]	[226]		[262]	[261]	[262]	[266]	[264]	[269]	[268]	[271]	[272]	[277]		[289]				
*Lantl	hanide	series	lanthanum 57	cerium 58	praseodymium 59	neodymium 60	promethium 61	samarium 62	europium 63	gadolinium 64	terbium 65	dysprosium 66	holmium 67	erbium 68	thulium 69	ytterbium 70		
Lunt	nunido	001100	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy 162.50	Ho 164.93	Er	Tm	Yb		
* * ^ ^ *	inide s	orios	actinium 89	thorium 90	protactinium 91	uranium 92	neptunium 93	plutonium 94	americium 95	curium 96	berkelium 97	californium 98	einsteinium 99	fermium 100	mendelevium 101	nobelium 102		
ACI	initiae si	enes		Th		Ű					Bk		Ës			No		
			Ac		Pa 231.04	238.03	Np	Pu	Am	Cm		Cf		Fm	Md	100 State State 1		
			[227]	232.04	231.04	238.03	[237]	[244]	[243]	[247]	[247]	[251]	[252]	[257]	[258]	[259]	8	

Chemical Reactions:

Iron rusting is an example of a chemical reaction occurring between iron (Fe) and oxygen (O), which results in iron oxide (Fe_2O_3) . Words such as burn, rot, rust, decompose, ferment, explode, and corrode usually signify that a chemical change has occurred.

The ability of a substance to undergo a specific chemical change is called a ______

How do we recognize that a chemical change has taken place?

The Law of Conservation of Mass:

Percent Composition:

One way to describe a mixture quantitatively is to report the percentage by mass of components.

Practice:

When 25.0g of a particular salt solution is evaporated to dryness, the residual salt is found to have a mass of 1.32g. What is the percent composition of the salt in the solution?

A chocolate chip cookie consists of 17.33g of cookie and 11.49g of chocolate chips. What are the percentages of cookie and chocolate?