Name:	Answers
-------	---------

Unit 2 Review

Perform the following conversions:

5.3 mm to cm0.53	0.0003 km to mm300
17 cm to mm170	828 cs to ms8280
5001 g to kg5.001	4 cg to g04
0.010 kg to g10	503 s to ms503000
125 cm to km00125	1 mL to L001

Indicate the number of significant figures in each of the following:

122	1.013
10984	10001
20014	22.04036
2.0014	525.000008
0.00001013	0.0900 _3

Perform the following calculations, answering with the proper number of significant figures

2.00 _ 667	(4.031)(0.08206)(373.1) _ 124
3.00	0.995
55.0001 + 0.0002 + 0.104 =55.104	$\frac{0.15}{28.062} = _\0053__$
(0.14)(6.022) =84	$\frac{0.500}{44.02} = \0114_$
52.331 + 26.01 - 0.9981 =77.34	(0.0043)(0.0821)(298) =11

Nickels are composed of an alloy containing both copper and nickel. A student finds that the mass of a nickel is 4.89 g. She then determines the mass of the copper in the coin to be 3.66 g and the mass of the nickel in the coin to be 1.23 g. Determine the percent composition of EACH metal in the nickel.

Copper = (3.66g/4.89g) x 100 = 74.8% Nickel = (1.23g/4.859g) x 100 = 25.2%

If the accepted mass of copper in a nickel is 3.75 grams, what is the % error from the experiment above? $((3.66g-3.75g)/3.75g) \times 100 = 2.40$

Name: _____

Significant Figures Worksheet

For each of the following values, state the number of significant figures. Additionally, circle the digit that is estimated.

1,2 <mark>3</mark> 0 <u>3</u>	2.30 <mark>5</mark> 4	0.01007 <mark>0</mark> 5	0.000 <mark>7</mark> 1
7.0 <mark>03</mark>	23.7 <mark>1</mark> 4	2. <mark>0</mark> 2	9.0 <mark>0</mark> 3

Round off the following values.

237 to 1 SF	200	71,231 to 3 SF	71,200
63,120 to 2 SF	63,000	0.012345 to 4 SF	0.01235
0.000912 to 1 SF	0.0009	0.00009238 to 3 SF	_0.0000924
1,923,100 to 3 SF	1,920,000	14.023 to 3 SF	14.0

Perform the following operations. Indicate the number of significant figures in each number, as well as the number of significant figures in your answer.

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-
$\frac{16}{5}$	= 3	$\frac{172}{0.0123} = 1.40x$	10 ⁴

Perform the following operations, following proper significant figures rules.

1700.03	0.083	7920.1	1,525,000.123	17.23
+ 90.071	+ 0.07	+ 357	<u>- 43,250.00</u>	<u>- 5.5</u>
1,790.10	0.15	8277	1,481,750.12	11.7

Name:_____

Significant Figures

Tell how many significant figures are in each of the following measurements:

1) 421 kg	3
2) 2,305 m	4
3) 4,500 cm	2
4) 0.0500 g	3
5) 0.003 g	1
6) 2 m	1
7) 2.00 m	3
8) 2300. L	4

Perform the following calculations and express your answers using the correct number of significant figures.

9)	5.22 m x 82.7 m	432	m^2
10)	0.0322 cm x 6.5 cm	21	$_cm^2$
11)	4.08 mL / 0.061 mL	67	
12)	9.475 g / 12.05 cm ³	0.7863	$\underline{\qquad}$ g/cm ³
13)	4.375 g + 14.62 g + 327.9 g	346.9	g
14)	2.798 mm + 1 mm	4	mm
15)	16.748 – 1.512 cm	15.236	cm
16)	6.0098 mL – 2.51 mL	3.50	mL
17)	(2.1 m) x (3.50 m)	7.4	$_{}m^2$

18) One side of a cube measures 2.76 cm. Find the volume of the cube in cubic centimeters and express your answer with the correct unit and to the correct number of significant figures. V = LxWxH

V = (2.76)x(2.76)x(2.76) $V = 21.0 \text{ cm}^3$

Name:_____

Error Analysis

- 1. DURING A CHEMISTRY LAB, YOUR GROUP DETERMINES THE DENSITY OF COPPER TO BE 10.02 G/CM³. THE ACCEPTED VALUE FOR THE DENSITY OF COPPER IS 8.96 G/CM³.
 - a. Find the absolute error.

Absolute Error = $\begin{vmatrix} Measured - Actual \end{vmatrix}$ = $\begin{vmatrix} 10.02 - 8.96 \end{vmatrix}$ = 1.06 g/cm³

b. Find the percent error.

((10.02 - 8.96)/8.96)) = 11.8%

- 2. The electrolysis of 18.0 g of H_2O should produce exactly 16.0 g of oxygen gas. However, when you collect the gas, the mass that you determined for oxygen was 14.9 g.
 - a. Find the absolute error.

= 14.9g-16.0g

=1.1g

b. Find the percent error. = ((14.9-16.0)/16.0))

=6.88%